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In a straight beam the ¯exural and longitudinal wave motions are uncoupled.
For a curved beam, however, there is interaction between the longitudinal
and bending deformations leading to coupled extensional±¯exural wave
propagation. In this paper coupled extensional±¯exural wave propagation is
investigated by considering the mobility of a ``semi-in®nite'' beam with a
constant radius of curvature. Both theoretical and experimental results are
discussed and formulae for the point and cross mobilities of the structure are
presented.
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1. INTRODUCTION

In the design stage of a vehicle there is often a need to predict the vibration
transmission to the structure by an applied force. One design method is based
upon using formulae for the mobility of simple structural elements. Many useful
formulae have already been published for structural elements such as beams,
plates and rings. In this paper simple design formulae are sought to describe the
mobility of a ``semi-in®nite'' beam where the centre line forms a plane of
constant radius of curvature. The cross-section of the beam is uniform and
symmetrical about the plane and it is assumed that there is no motion
perpendicular to the plane. It is also assumed that the beam material is linearly
elastic, homogeous, isotropic and continuous.
There have been a number of previous studies of the wave motion in a curved

beam. In an elementary theory by Love [1] it is assumed that the centre-line
remains unextended during ¯exural motion, whilst ¯exural behaviour is ignored
when considering extensional motion. Using these assumptions the vibrational
behaviour of complete or incomplete rings has been considered by many
researchers who are interested in the low frequency behaviour of arches and
reinforcing rings [2]. In the same reference [1] Love presented equations for thin
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shells which include the effects of extension of the mid-surface during bending
motion. FluÈ gge [3] has also derived equations for thin shells which include
extension of the mid-surface during bending motion but which are more
consistent when discarding higher order terms. Both these sets of equations can
be reduced to equations applicable to a curved beam. Equations derived
speci®cally for a curved beam are presented by Philipson [4] who included
extension of the central line in the ¯exural wave motion, and also rotary inertia
effects. In a development analogous to that of Timoshenko for straight beams,
Morley [5] introduced a correction for radial shear when considering the
vibration of curved beams. Graff later presented frequency versus wave number
and wave speed versus wave number data for wave motion in a curved beam, for
the Love based equations [6], and when including higher order effects [7].
However, dispersion curves only describe the possible types of wave motion in

the structure: no assumptions are made about any excitation force or boundary
conditions. In the present work the vibrational response of a curved ``semi-
in®nite'' beam when excited at its free end by a purely circumferential force is
developed by considering the propagating and evanescent waves in the beam.
This method has previously been used to analyse the ¯exural response of a
straight Euler±Bernoulli beam on periodic [8] and non-periodic supports [9]. To
validate the theoretical predictions, experimental studies were undertaken on a
curved mild steel beam with a constant radius of curvature. In section 3 the
apparatus used for these experiments is described and the measurement method
outlined. In section 4 a comparison between the measured and predicted
mobilities is presented which leads to a set of simple formulae for the point and
cross mobilities of the structure.

2. THEORY

2.1. BEAM EQUATIONS AND FREE WAVE SOLUTION

Consider a portion of a curved beam, as shown in Figure 1. The
circumferential co-ordinate measured around the centre-line is s, while the
outward pointing normal co-ordinate from the centre-line is z, and the general
radial co-ordinate is r. The centre-line is de®ned as the locus of centroids of each
cross-sectional element. The tangential and radial displacements of a material
point are U(r, s, t) and W(r, s, t) respectively. For small displacements of thin
beams the assumptions known as ``Love's ®rst approximation'' [3], in classical
shell theory, can be made which leads to the following linear relationships
between the displacements of a material point and components of displacement
at the undeformed centre-line:

U�r, s, t� � u�R, s, t� � zf�s, t�, �1�

W�r, s, t� � w�R, s, t�, �2�
where u and w are the components of displacement at the centre-line in the
tangential and radial directions, respectively, and f is the rotation of the normal
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to the centre-line during deformation:

f � u

R
ÿ @w

@s
,

� angle ofcurvature� �rotational displacement
of straight beam �

�3�

and W is independent of z and is completely de®ned by the centre-line
component w. The relation for total circumferential strain is:

es � 1

1� z

R

� � �es � zbs�, �4�

where the in-plane (extensional) strain is given by

es � w

R
� @u

@s
,

� stretching due to
radial displacement� � stretching due to motion

in circumferential direction�
�5�

and the bending strain (mid-surface change in curvature) is given by

bs �
@f
@s

, �6�

� @

@s

u

R
ÿ @w
@s

� �
: �7�

See Appendix A for a complete derivation of the strain displacement expression.
Since the radial stress component sr is assumed negligible, the transverse strain er
is zero, and as a consequence of Kirchoff's hypothesis the transverse shear strain

W(r, s, t)

U(r, s, t)
s

h

R r=(R+z)

(0, 0)

Centre-
line

Figure 1. Geometry of a curved beam.
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gsr is zero. Assuming the material to be linearly elastic, the circumferential stress±
strain relationship is given by Hooke's Law:

ss � Ees, �8�
where E is Young's modulus. Assuming the material to be homogeneous and
isotropic, the material properties E, G and � can be treated as constants. Thus,
by integrating the stresses over the beam thickness, force and moment resultants
are obtained. Using the strain-displacement expression, equation (4), the
circumferential force is given by

N � ES
w

R
� @u
@s

� �
� EI

R

w

R2
� @

2w

@s2

� �
, �9�

where S is the cross-sectional area of the beam, and I is the second moment of
area of the cross-section. The bending moment is given by

M � ÿEI w

R2
� @

2w

@s2

� �
: �10�

Although the transverse shear stress ssr is zero, a non-vanishing shear resultant,
Q, is de®ned as the integral across the thickness of the transverse shear stress,
which leads to the following expression:

Q � ÿEI @
@s

w

R2
� @

2w

@s2

� �
: �11�

Figure 2 shows the sign convention of force resultants on an elemental slice of a
curved beam.
FluÈ gge based equations of motion for a curved beam can be obtained by a

reduction of the equations of motion for a circular cylindrical shell presented in
reference [3]. This leads to the following set of equations:

RE
@2u

@s2
� 1

R

@w

@s

� �
� rR

@2u

@t2
, �12�

ÿEK2R
@

@s2
w

R2
� @

2w

@s2

� �
ÿ E

@u

@s
� w

R

� �
� EK2

R

w

R2
� @

2w

@s2

� �� �
� rR

@2w

@t2
, �13�

where r is the density of the material, and K the radius of gyration. To obtain
an harmonic solution assume that ¯exural and extensional sinusoidal waves
propagate in the positive circumferential direction and can be represented
respectively by:

w�s, t� � A exp�i�otÿ ks��, �14�

u�s, t� � B exp�i�otÿ ks��, �15�
where A and B are the complex wave amplitudes. Substituting these expressions
into the equations of motion (12) and (13) gives the harmonic form of the
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equations of motion:

Ek2

r
ÿ o2

� �
B� i

kE

Rr
A � 0, �16�

ÿEik

Rr
B� k2 ÿ 1

R2

� �2
EK2

r
� E

R2r
ÿ o2

" #
A � 0: �17�

2.2. NUMERICAL EXAMPLE

For a given radian frequency, o, the harmonic equations of motion were
solved to ®nd the complex valued wave number, k, and corresponding wave
amplitude ratio B/A. The physical dimensions and material properties were
chosen to be the same as the mild steel beam used for the laboratory
experiments. The physical properties of the beam are listed in Table 1. Wave
number versus frequency curves for the beam are shown in Figure 3.
The frequency range is expressed in terms of the non-dimensional frequency
O=oR/co , where co is the phase velocity of extensional waves in a straight bar,
whilst the wave number range is expressed in terms of the non-dimensional wave
number kR. The frequency axis extends over the non-dimensional frequency
range O=0�01 to 10�0 which represents a dimensional frequency of 8�2 to
8200 Hz. It can be seen in Figure 3 that there are two different frequency
regimes separated by the ring frequency O=1. Above the ring frequency the
three wave types are: (i) a predominantly ¯exural travelling wave (marked with
the symbol ``*''); (ii) a predominantly ¯exural near ®eld wave (marked with the
symbol ``*''); and (iii) a predominantly extensional travelling wave (marked
with the symbol ``+''). It can be seen in Figure 3 that above the ring frequency
both ¯exural travelling waves and ¯exural near-®eld waves have the same wave
number. Below the ring frequency the predominantly ¯exural travelling wave
and the predominantly ¯exural near ®eld waves still exist, however, the

N

M

Q

r

s
N+(dN/ds)ds

M+(dM/ds)ds

Q+(dQ/ds) ds

ds

Figure 2. Sign convention and force resultants on an elemental slice of curved beam.
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predominantly extensional travelling wave is now replaced by a predominantly
extensional near ®eld wave (marked with the symbol ``6''). Below O=0�1 the
predominantly ¯exural travelling and near ®eld wave numbers diverge, with the
travelling wave having the higher wave number.

2.3. RESPONSE DUE TO CIRCUMFERENTIAL EXCITATION AT THE FREE END

Assume that a ``semi-in®nite'' beam with curvature is excited at its end by a
point harmonic force, Fs e

iot, acting in the circumferential direction, as shown in
Figure 4. At a given position along the beam the total ¯exural or extensional
displacement will be given by the sum of the displacements of the individual
waves travelling away from the end of the beam. Thus, the total ¯exural
displacement is given by

w�s� � A1 e
ÿik1s � A2 e

ÿik2s � A3 e
ÿik3s, �18�

where A1, A2 and A3 represent the unknown wave amplitudes and k1, k2 and k3

TABLE 1

Physical properties of the experimental beam

Density, r(kg/m3) 7850
Young's modulus, E (N/m2) 2076 109

Radius of curvature, R (m) 1�0
Breadth, b (m) 0�05
Depth, d (m) 6�0686 10ÿ3

10–1

100

101

102

10–2 10–1 100 101

N
o

n
-d

im
en

si
o

n
a

l 
w

a
v

en
u

m
b

er
 (

k
R

)

Non-dimensional frequency

Figure 3. Wave number versus frequency relationship for a beam with a constant radius of
curvature: *, predominantly ¯exural travelling wave; *, predominantly ¯exural near ®eld wave;
+, predominantly extensional travelling wave; 6, predominantly extensional near ®eld wave.
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the respective wave numbers. For clarity of notation the harmonic term eiot has

been omitted. The corresponding extensional displacement is given by

u�s� � B1 e
ÿik1s � B2 e

ÿik2s � B3 e
ÿik3s, �19�

To determine the response of the structure the boundary conditions and

applied load at the free end of the beam need to be evaluated. The boundary

conditions and applied loads at s=0 are: (i) that the axial force resultant is

equal to the externally applied force; (ii) that the bending moment is zero; and

(iii) that the shear force is zero. Substituting the displacement equations (18) and

(19) into the FluÈ gge based expressions for the resultant forces gives a set of three

simultaneous equations in the unknown wave amplitudes A1, A2 and A3. For a

given excitation frequency, o, the FluÈ gge based equations of motion can be

solved to ®nd the three possible wave numbers, k1, k2 and k3 and the respective

extensional to ¯exural wave amplitude ratios, Bi/Ai . Assuming a ``semi-in®nite''

beam with waves travelling away from the excitation at the free end, then only

three wave amplitudes (A1 :A2 :A3) remain unknown. Substituting the previously

calculated wave numbers, ki into the set of three simultaneous equations and

assuming unit force Fs=1, enables the unknown wave amplitude ratios

(A1 :A2 :A3) to be evaluated. The cross receptance can now be calculated by

evaluating the ¯exural displacement (equation (18)) at the excitation location:

azF � w�0�
F
� A1 � A2 � A3

F
: �20�

Using the extensional to ¯exural wave amplitude ratios Bi/Ai , the point

receptance can be calculated by evaluating the extensional displacement at the

excitation location:

asF � u�0�
F
� B1 � B2 � B3

F
: �21�

r

s

W(r, s, t)

U(r, s, t)
Fse

i   t

s=0 ∞

Figure 4. Diagram of the tangential displacement, U, and radial displacement, W, in a ``semi-
in®nite'' beam with curvature when excited by an harmonic force, Fs e

iot, acting in the circumfer-
ential direction at the free end.
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3. EXPERIMENTAL APPARATUS AND METHOD

Figure 5 shows a schematic representation of the experimental curved beam.
To obtain free conditions at the end of the beam, the whole beam was suspended
on thin wires at 1-m intervals from underneath laboratory benches. It was
assumed that no motion would occur in the plane of the suspension system. To
obtain ``semi-in®nite'' conditions one end of the beam was inserted into an
anechoic termination. This termination consisted of a 1-m long box ®lled with
sand to dissipate the energy of the wave motion. The excitation force was
obtained by striking the beam with an instrumented hammer (BK8202) at the
free end. To assist in obtaining a purely circumferential force a hard steel
triangular block was glued at the centre of the cross-section of the free end of
the beam. The applied force was measured with the instrumented hammer,

1.0 m 1.0 m 1.0 m 1.0 m 1.0 m

Thin wire
suspension

Triangular
excitation

block Curved
beam

Radius of  curvature of  beam in plane
perpendicular to plane of  suspension
system = 1.0 m

Anechoic
termination

1.0 m

(a)

Radius of
curvature of
beam = 1.0 m

Total length of
beam = 5.0 m

Triangular
excitation

block

1.0 m
Anechoic

termination

(b)

Figure 5. Schematic representation of the experimental apparatus: (a) side view, (b) top view.



BEAM WITH CONSTANT CURVATURE 895

whilst the response acceleration was measured using two 11-g accelerometers
(BK4371). Extensional motion was measured using an accelerometer mounted
on the cross-section of the beam just above the triangular block and, ¯exural
motion was measured using an accelerometer, mounted on the centre-line of the
side of the beam. The applied force and resulting accelerations were recorded
simultaneously on an HP3566A spectrum analyser and the point and cross
mobility calculated directly from a single measurement by dividing the Fourier
transform of the response velocity by that of the applied force.
The instrumented hammer provides an excitation force with a signi®cant

frequency spectrum up to approximately 10 kHz with a usable frequency range
(below the ®rst zero) up to approximately 3 kHz. Thus, for the frequency
response measurements anti-alias ®lters within the spectrum analyser were set at
3200 Hz, and a sampling rate of 8192 samples/s chosen, giving a folding
frequency of 4096 Hz. To record the entire decaying response a Fast Fourier
Transform (FFT) block size of 8192 points was chosen, giving a record length of
1 s, and a frequency resolution of 1 Hz. The digitised time histories were
transformed to the frequency domain using an FFT algorithm within the
spectrum analyser. Since the time histories were recordings of transient signals,
the rectangular data window was chosen. The spectra of the acceleration signals
were integrated in the frequency domain by division by io, and the point and
cross mobilities calculated from a single measurement by complex division of the
respective velocity spectra by the excitation force spectrum. The mobility data
shown in Figures 6 and 7 are presented on non-dimensional frequency axes.
These were obtained from the dimensional spectra by multiplying the frequency
axis by 2pR/co .

4. RESULTS

The predicted point mobility is compared with the measured point mobility in
Figure 6 over the non-dimensional frequency range O=0�01 to 10�0. Figure 6(a)
shows the modulus of the point mobility which indicates that there are two
frequency regions separated by the ring frequency O=1�0. Above the ring
frequency the predicted value of the point mobility (marked with ``*'' symbols)
asymptotes to a constant value of 86 10ÿ5 (m/s)/N as the frequency increases.
This value corresponds to the point mobility of purely extensional waves in a
``semi-in®nite'' straight bar given by reference [10] as

YsF � co
ES

: �22�

The corresponding measured data show resonant behaviour, with the resonant
frequencies corresponding approximately to those of purely extensional waves in
a straight rod of length 5 m, with the same material properties as the
experimental curved beam.
Below the ring frequency extensional near-®eld waves are to be expected

rather than travelling extensional waves This is con®rmed by inspection of the
modulus of the point mobility shown in Figure 6(a) where it can be seen that the
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experimental data do not exhibit resonant behaviour. Both the measured and

predicted data exhibit the characteristics of a ``mass line'' and it is shown in

Appendix B that below the ring frequency the beam acts as a mass of length

equal to the radius of curvature, R. Further, in terms of the non-dimensional

frequency, O, the point mobility can be expressed as
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Figure 6. (a) Modulus of the point mobility and (b) phase angle of the point mobility (i.e.,
resulting extensional velocity/circumferentially acting force) of the experimental curved beam
when excited by a force acting at the free end (predicted data marked with ``*'' symbols).
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Figure 7. (a) Modulus of the cross mobility and (b) phase angle of the cross mobility (i.e.,
resulting ¯exural velocity/circumferentially acting force) of the experimental curved beam when
excited by a force acting at the free end (predicted data marked with ``*'' symbols).



898 S. J. WALSH AND R. G. WHITE

YsF � ÿi
OSrco

: �23�

Figure 6(b) shows the corresponding phase angle which indicates that below the
ring frequency the velocity is 90� out of phase with force and thus only near ®eld
waves are being generated. Above the ring frequency the velocity is in phase with
the applied force and, thus travelling waves are being generated.
Figure 7 shows the measured and predicted cross mobility (¯exural velocity

per unit circumferential force). The modulus is shown in Figure 7(a) where the
measured data indicate resonant behaviour with the measured resonant
frequencies corresponding approximately to the natural frequencies due to
¯exural waves in a free±free beam of length 5 m. This is surprising as the point
mobility indicated that the response consists largely of near ®eld extensional
waves below the ring frequency, and thus the measured data should not exhibit
resonant behaviour. This discrepancy may be due to the wave length of the
extensional near ®eld waves being greater than the length of the experimental
beam (5 m). Thus, at the end of the beam within the anechoic termination the
predominantly extensional waves may be converted into predominantly ¯exural
travelling waves which gives rise to the resonant behaviour shown in Figure 7.
Comparison of the predicted modulus of the cross mobility shown in Figure 7(a)
with the predicted modulus of point mobility shown in Figure 6(a) indicates that
both functions have the same value below the ring frequency. Comparison of the
phase angle of the cross mobility shown in Figure 7(b) with the phase angle of
the point mobility shown in Figure 6(b) indicates a 180� phase difference
between the phase angle of the cross mobility and the phase angle of the point
mobility below the ring frequency. Thus, from equation (23) the cross mobility is
given by

YzF � i

OSrco
: �24�

In terms of radian frequency, o, this becomes

YzF � i

oRSr
: �25�

Thus, from equation (25) it can be seen that the cross mobility is dependent
upon the frequency, o, the radius of curvature, R, and the mass per unit length,
Sr, of the beam. It can also be seen that the ¯exural velocity is 90� out of phase
with the applied circumferential force.

5. SUMMARY

In this paper both measured and predicted levels of the mobility of a ``semi-
in®nite'' beam with a constant radius of curvature have been presented, the
beam being excited in the circumferential direction at the free end. The results of
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this study can be summarised as follows: (a) The point mobility has two
frequency regions separated by the ring frequency. Above the ring frequency the
point mobility is dominated by predominantly extensional travelling waves and
has a constant value which asymptotes to the point mobility of purely
extensional waves in a straight ``semi-in®nite'' bar. Below the ring frequency the
point mobility is dominated by predominatly extensional near ®eld waves and
the beam acts as a mass of length equal to the radius of curvature. (b) The cross
mobility is dependant upon frequency, the radius of curvature and the mass per
unit length of the beam. The ¯exural velocity is 90� out of phase with the applied
circumferential force.
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APPENDIX A: DERIVATION OF CIRCUMFERENTIAL STRAIN IN TERMS
OF COMPONENTS OF DISPLACEMENT AT THE UNDEFORMED CENTRE-

LINE

By considering the deformation of an element of a circular cylindrical shell
Cremer et al. [10] derive an expression for total circumferential strain [10, p. 177]
which can be written as
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es � 1

1� z

R

� � W

R
� @U
@s

� �
, �A1�

where the tangential and radial displacements of the material point are U(r, s, t)

and W(r, s, t), respectively. For small displacements of thin beams the

assumptions known as ``Love's ®rst approximation'', in classical shell theory,

can be made which leads to the following linear relationships between the

displacements of a material point and components of displacement at the

undeformed centre-line

U�r, s, t� � u�R, s, t� � zf�s, t�, �1�

W�r, s, t� � w�R, s, t�, �2�
where u and w are the components of displacement at the centre-line in the

tangential and radial directions, respectively and, f is the rotation of the normal

to the centre-line during deformation

f � u

R
ÿ @w

@s
,

� angle ofcurvature� �rotational displacement
of straight beam �

�3�

and W is independent of z and is completely de®ned by the centre-line

component w. Substituting equations (1) and (2) into the strain±displacement

equation (A1) gives the following relation for total circumferential strain

es � 1

1� z

R

� � w

R
� @u
@s
� z

@f
@s

� �
: �A2�

This can be expressed as

es � 1

1� z

R

� � �es � zbs�, �4�

where the in-plane (extensional) strain is given by

es � w

R
� @u

@s
,

� stretching due to
radial displacement� � stretching due to motion

in circumferential direction�
�5�

and the bending strain (mid-surface change in curvature) is given by

bs �
@f
@s

, �6�
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� @

@s

u

R
ÿ @w
@s

� �
: �7�

APPENDIX B: DERIVATION OF THE POINT MOBILITY BELOW THE RING
FREQUENCY OF A ``SEMI-INFINITE'' BEAM WITH CONSTANT

CURVATURE EXCITED BY A FORCE ACTING IN THE
CIRCUMFERENTIAL DIRECTION AT THE FREE END

The mobility of a simple mass element is given by reference [11] as

Y � ÿi
om

: �B1�

In terms of the non-dimensional frequency, O, this can be expressed as

Y � ÿiR
Ocom

: �B2�

In Figure 6(a) the modulus of the mobility at O=1�0 is at the intersection with
the point mobility of travelling extensional waves. Thus,

jYj � R

Ocom

� 8�067610ÿ5 �m=s�=N: �B3�
Therefore, m=2�414 R. But, the mass per unit length of the beam
Sr=2�414 (kg). Hence, below the ring frequency the beams act as a mass of
length equal to the radius of curvature. Further, substituting for the mass,
m=SRr, into equation (B1) gives an expression for the point mobility below
the ring frequency:

Y � ÿi
oSRr

: �B4�

In terms of the non-dimensional frequency, O, this becomes

Y � ÿi
OSrco

: �B5�

APPENDIX C: NOTATION

A ¯exural wave amplitude
B extensional wave amplitude
E Young's modulus
Fs magnitude of externally applied force acting in circumferential direction
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G shear modulus
I second moment of area of cross-section of beam
K radius of gyration
M bending moment on cross-section of beam
N circumferential force on cross-section of beam
Q shear force on cross-section of beam
R radius of curvature
S cross-sectional area of beam
U displacement of material point in circumferential direction
W displacement of material point in radial direction
Y mobility
b breadth (width) of beam
co wavespeed of extensional waves in a straight bar
es total circumferential strain
h thickness of beam
k wavenumber
m mass
r co-ordinate in radial direction
s co-ordinate in circumferential direction
t time
u displacement at centre-line in circumferential direction
w displacement at centre-line in radial direction
z co-ordinate of outward pointing normal
O non-dimensional frequency
a receptance
bs bending strain
gsr transverse shear strain
er radial strain
es circumferential strain
� Poisson's ratio
r density
sr radial stress
ss circumferential stress
ssr transverse shear stress
f change in slope of normal to centre-line during deformation
o radian frequency
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